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Abstract 

Background Recommendations for statistical methods in rare disease trials are scarce, especially for cross-over 

designs. As a result various state-of-the-art methodologies were compared as neutrally as possible using an illustra-

tive data set from epidermolysis bullosa research to build recommendations for count, binary, and ordinal outcome 

variables. For this purpose, parametric (model averaging), semiparametric (generalized estimating equations type 

[GEE-like]) and nonparametric (generalized pairwise comparisons [GPC] and a marginal model implemented in the R 

package nparLD) methods were chosen by an international consortium of statisticians.

Results It was found that there is no uniformly best method for the aforementioned types of outcome vari-

ables, but in particular situations, there are methods that perform better than others. Especially if maximizing 

power is the primary goal, the prioritized unmatched GPC method was able to achieve particularly good results, 

besides being appropriate for prioritizing clinically relevant time points. Model averaging led to favorable results 

in some scenarios especially within the binary outcome setting and, like the GEE-like semiparametric method, 

also allows for considering period and carry-over effects properly. Inference based on the nonparametric marginal 

model was able to achieve high power, especially in the ordinal outcome scenario, despite small sample sizes 

due to separate testing of treatment periods, and is suitable when longitudinal and interaction effects have to be 

considered.

Conclusion Overall, a balance has to be found between achieving high power, accounting for cross-over, period, 

or carry-over effects, and prioritizing clinically relevant time points.
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Introduction

In the European Union, a rare disease is defined as one 

that affects less than 1 in 2000 people. Despite the low 

prevalence of a particular rare disease, the fact that 

there are over 6,000 rare diseases known to date makes 

them a huge challenge for healthcare systems, research, 

and—most importantly—the affected patients and fam-

ilies [10, 27].

Just like in any other area of medical research, the 

key conclusions of scientific publications are frequently 

based on quantitative data. �erefore, using sound sta-

tistical methods for analyzing these data is crucial for 

ensuring the validity of the conclusions drawn regard-

ing diagnosis, prognosis, and treatment of patients. In 

research on rare diseases, there are some additional 

challenges that have to be adequately addressed, such 

as, for example, the heterogeneity of the disease, small 

sample sizes, limited data for study planning, difficul-

ties in defining appropriate outcome measures, and 

above all a considerable trial burden for the patients 

[30].

�e main aim of the present paper is to provide rec-

ommendations and guidance on statistical methods for 

analyzing longitudinally collected data in a cross-over 

trial setting. Considering the fact that sample sizes are 

usually small in rare diseases trials, this is a quite natural 

design choice. �e basis for our recommendations is con-

stituted by systematic empirical comparisons of existing 

methods that have been conducted in the context of the 

EBStatMax project (European Joint Programme on Rare 

Diseases, EU Horizon 2020 grant no. 825575). In this col-

laborative project, recently proposed methods for the 

statistical analysis of rare disease data have been exten-

sively evaluated, motivated by longitudinal cross-over 

data from a clinical trial on Epidermolysis bullosa (EB). 

In the present manuscript, the findings from these exten-

sive evaluations and related considerations are distilled 

into statistical guidance regarding design and analysis of 

such trials. It should be emphasized that the focus of this 

guidance is on rare disease trials featuring longitudinal 

and cross-over aspects. Some generally applicable lessons 

learnt from previous projects have partially informed the 

decision which data analysis methods should be consid-

ered. Yet, those further aspects of rare diseases method-

ology have been addressed in more detail elsewhere: In 

the ASTERIX [2], InSPiRe [20], and IDeAl [19] projects, 

a wide range of design and data analysis issues has been 

tackled, from surrogate endpoints (e.g., Elst et al. [8]) to 

adaptive designs (e.g., Graf et  al. [15]) and pharmaco-

metrics (e.g., Strömberg and Hooker [31]). In addition 

to numerous publications in statistical journals, the cor-

responding project consortia also released several sum-

maries and guidance documents (e.g., Hilgers et al. [17]).

In Sect.  “Motivation”, we briefly review the motivat-

ing example of Epidermolysis Bullosa (EB), which forms 

the basis for both this guidance paper and the EBStat-

Max project. Reference is also made to the outcomes 

analyzed. Indeed, for a rare disease trial, different types 

of outcomes (“objective”, “patient-centered”, etc.) have to 

be considered. Statistically, these are measured on differ-

ent scales, which is the key reason for presenting them 

separately in the sequel. After describing the simula-

tion setup and the primary performance measures in 

Sect. “Simulation design and performance measures”, the 

used state-of-the-art methods for rare disease cross-over 

trials will be theoretically presented in Sect.  “Methods”. 

More application-oriented readers may also skip this the-

oretical part, because it is not necessary to understand 

all technical details of the respective methods in order to 

comprehend the key results. Following this description 

of the methods, Sect.  “Results and recommendations” 

presents the results and recommendations for the three 

outcomes considered in separate subsections. Finally, 

Sect. “Discussion” contains a discussion of the key results 

and summarizes the main conclusions. �is manuscript 

is primarily intended to provide recommendations for 

applied researchers. At the same time, since the recom-

mendations are based on systematic empirical compara-

tive evaluations of statistical methods, it might also be of 

interest for statisticians and methodologists. Moreover, 

other stakeholders in the field of rare diseases, such as 

regulators, pharmaceutical companies, and above all, the 

patients, might also find these recommendations useful, 

due to the fact that choosing valid statistical methods is a 

key step in providing trustworthy evidence of efficacy of 

(novel) treatments.

Scope of the guidance

Motivation

Because of the inherent rarity of the disease, small sam-

ple sizes are frequently encountered in rare disease trials. 

�is also applies to the inherited skin disease Epider-

molysis Bullosa (EB), clinically characterized by fragil-

ity of epithelial-lined tissues and surfaces with recurrent 

mucocutaneous blistering. Treatment approaches try 

to ameliorate, among others, the blisters formation and 

their accompanying symptoms such as burdensome 

pain and pruritus. �e starting point for these recom-

mendations within the EBStatMax project is a data set 

from this area of research. �e data set derives from a 

study in which EB patients were treated with an immu-

nomodulatory topical diacerein cream. In a randomized, 

placebo-controlled, 2-period cross-over phase 2/3 trial, 

the impact of 1% diacerein cream vs. placebo in reduc-

ing the number of blisters in the simplex subtype of EB 

(EBS) was assessed. Furthermore, the severity of pain and 
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pruritus were assessed by a visual analogue scale (VAS). 

�e VAS ranges from 0 (no pain/pruritus) to 10 (worst 

pain/pruritus imaginable). Fifteen patients were rand-

omized to either placebo or diacerein for a 4-week treat-

ment and a 3-month follow-up period. After a washout 

phase, patients were crossed over to the opposite treat-

ment for a second treatment period (see Fig. 1).

86% of the patients receiving diacerein, in period 1 

and 37.5% in episode 2 met the primary endpoint, i.e., 

a reduction of the number of blisters by more than 40% 

from baseline in predefined assessment areas after the 

4-week treatment (vs. 14% and 17% with placebo, respec-

tively). Additionally, the blister counts as well as the VAS 

scores for pain and pruritus were considered as second-

ary outcome variables (see [35] for more details). Since 

these outcomes are measured on different scales (binary 

for the primary outcome and metric/count as well as 

ordinal for the secondary outcomes), recommendations 

for these three types of outcomes will be derived from 

previously conducted simulation studies [14, 33]. Moreo-

ver, in each of these two methodological papers, a real life 

data example was also described, using the original study 

data of Wally et  al.[35]. It should be noted that other 

study designs for rare disease settings are both viable and 

common, but this guidance paper focuses on longitudinal 

studies and cross-over aspects.

Simulation design and performance measures

EBStatMax is a so-called demonstration project funded 

by the European Joint Programme on Rare Diseases 

(EJP-RD), aimed at bridging the gap between challenges 

arising from clinical practice and their potential statis-

tical solutions. To this end, at first, the members of the 

EBStatMax project consortium set up simulation studies, 

to compare different statistical methodologies. Subse-

quently, the project group addressed the key goal of the 

project, that is, to not only consider the methods theo-

retically but to also provide recommendations, software 

implementations, and educational materials. �e aim of 

the simulations was to neutrally compare different statis-

tical hypothesis testing approaches and to recommend 

methods that maintain the nominal type-I error while 

demonstrating competitive statistical power compared to 

other methods. We will describe the simulation scenario 

for ordinal outcomes (VAS scores for pain and pruritus) 

in detail here. �e simulation scenarios are similar for 

count and binary outcomes. For the count outcome the 

raw blister counts were used. Finally, the binary outcome 

was created based on an indicator for a 40% reduction 

compared to baseline (for details regarding the respec-

tive simulation setup, see Geroldinger et al. [14] and Ver-

beeck et al. [33]).

�e EB trial data set was used as the basis for the simu-

lations. Recall from Sect. “Motivation”  that this is a lon-

gitudinal data set from a cross-over study with 4 time 

points per subject and study period. In the simulations, 

the outcome measurements were grouped into blocks 

of four time points rather than considering individual 

time point levels. For each simulation run, the blocks per 

subject and treatment period were randomly permuted 

across all subjects and treatment conditions (placebo and 

verum). Permuting full blocks ensured that data charac-

teristics (especially the longitudinal dependence struc-

ture within each block) was preserved. On average, over 

all simulated samples, the block permutation established 

a situation of no difference between the treatment condi-

tions and, hence, allows to evaluate the empirical type-

I error rates (for more details regarding the type-I error 

please see the Fig. 2 in Sect. “Discussion”).

For power simulations, additional steps were imple-

mented to simulate different treatment effect scenarios. 

�ese steps included generating random variables from 

different distributions and adding them to the obser-

vations from the placebo group at specific time points 

(because larger VAS scores / blister counts are consid-

ered as worse outcomes). �e setup for power simu-

lations aligns with clinical expertise by considering 

different distributions (for more details regarding power 

in general, please see the Fig. 3 in Sect. “Discussion” and 

see Geroldinger et al. [14] and Verbeeck et al. [33]). �e 

parameters of these distributions were chosen such that 

the expected values (shift effects) corresponded to clini-

cally meaningful effects. Since the outcomes are observed 

longitudinally, that is, at 4 time points within each 

period, the time point(s) when the effect was present had 

to be specified. To this end, two different scenarios were 

considered:

• Scenario 1 �e random variables were added under 

placebo at the third time point (i.e., the post-treat-

ment visit) only (=scenario with a single time point 

with a treatment effect).

• Scenario 2 �e random variables were added under 

placebo at the third time point (i.e., the post-treat-

Fig. 1 Illustration of the cross-over study design of the EB trial
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ment visit), and additionally, about half of the effect 

was added to outcome under placebo at the fourth 

time point, i.e., the follow-up visit (=scenario with 

multiple time points with a treatment effect).

�e resulting empirical power values were based on a 

two-sided level of significance ( α = 0.05).

Methods

In this section, different approaches are presented for 

analyzing count, binary, and ordinal outcome meas-

ures in rare disease settings, respectively, if a cross-over 

study is conducted. Based on these methods, recom-

mendations are then suggested. At the outset, however, 

it is important to distinguish between three different 

basic approaches. Indeed, there are parametric, sem-

iparametric and nonparametric approaches that can be 

used. A large class of statistical methods is of a para-

metric nature; this means that a distribution is assumed 

for the data, and in particular, for longitudinal settings 

a correlation structure of the measurements within 

a subject is fully specified. Differences between two 

groups, for example, are then quantified by differences 

or ratios of certain parameters, such as means, medians, 

or other regression parameters. Results that emerge 

from these parametric procedures usually depend sub-

stantially on the extent to which the observed data in 

the sample can be modeled by these parametric distri-

butions, i.e., how well the model fits the data, and how 

sensitive the chosen methods are against violations of 

the parametric assumptions. Nonparametric statistics 

is a key counterpart to this, not requiring the use of 

specific distributional assumptions at all. �us, non-

parametric approaches can be used to analyze metric, 

ordinal, categorical, or binary variables, either discrete 

or continuous, while a parametric approach would 

require distinct models for each of these variable types. 

Semiparametric methods, in contrast, have both para-

metric and nonparametric features; for example, one 

might assume a parametric mean-based model, while 

the correlation structure of the measurements is not 

fully specified [4, 5].

In the sequel, different parametric, semiparametric and 

nonparametric approaches are discussed, which have 

been selected as competitors for the simulation studies 

(see Sect.  “Simulation design and performance meas-

ures”). �e choice of these approaches has been made by 

the project consortium and guided by extensive previous 

experience with applying these methods in the context of 

small samples / rare diseases. For a more detailed theo-

retical description of these methods, we refer to [14, 33], 

and the references therein.

Nonparametric marginal model (NMM)—nparLD

A nonparametric marginal model (NMM) is imple-

mented in the R package nparLD. �is provides easy and 

user-friendly access to robust rank-based methods for 

the analysis of longitudinal data in factorial settings. For 

model classification purposes, nparLD uses a notation 

system for frequently used factorial designs depending 

on the number of factors. To this end, the factor which 

stratifies samples into independent groups, is called a 

whole-plot factor, while the factor defining the repeated 

measurements is of a so-called sub-plot-factor [28] type. 

�is terminology derives, historically, from agricultural 

Fig. 2 Type-1-error

Fig. 3 Power
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experimental design. �e underlying effect size for this 

method is the so-called relative effect. To illustrate the 

simplest case for the relative effect mathematically, the 

version for two random variables is defined as follows 

[4]. For two independent random variables X1 ∼ F1 and 

X2 ∼ F2 , the probability

is called relative effect of X2 with respect to X1 [4, 5]. �is 

definition is based on the observation that for two inde-

pendent continuous random variables X1 and X2 , the rel-

ative effect of X2 to X1 can be characterized by

i.e., the probability that X1 takes smaller values than X2 , 

since in the continuous case P(X1 = X2) = 0 . Informally 

speaking, the relative effect quantifies the probability 

that the values of the outcome of one group are smaller 

than in the other group. Moreover, it immediately follows 

from its definition that the relative effect p takes values 

between 0 and 1.

To perform appropriate test procedures using the R 

package nparLD, the relative effect is used to derive test 

statistics. For the purpose of the EBStatMax project, 

that is, for the analysis of the time course within a cross-

over study, it was decided to test for an interaction effect 

within this framework, i.e., to test whether the longitudi-

nal profiles are different between the two treatments. To 

this end, the so-called ANOVA type statistic (ATS) was 

used, which can be regarded as a nonparametric general-

ization of the classical parametric ANOVA test statistic. 

In particular, its sampling distribution can be approxi-

mated by an F distribution (for details, see [4, 28]).

Generalized pairwise comparisons (GPC) variants

Another nonparametric approach is the so-called General-

ized Pairwise Comparisons (GPC). If there is only a single 

outcome and no missing data, the GPC approach is a lin-

ear transformation of the well-known Mann-Whitney rank 

test [25, 32]. Instead of a rank-based approach, the GPC 

method evaluates the longitudinally measured outcomes 

by constructing all possible pairs, one from each treatment 

group, and subsequently assigns a score to each pair. Since 

pairs are constructed between the two treatment arms 

independently from the treatment period, period effects 

are ignored in this method.

Intuitively, there are different approaches to construct 

these pairs for longitudinally collected outcomes. In math-

ematical terms, one could choose a univariate or multivari-

ate approach, distinguish between matched and unmatched 

(1)p = P(X1 < X2) +
1

2
P(X1 = X2)

p+
= P(X1 ≤ X2) = P(X1 < X2) = 1 − P(X1 ≥ X2),

versions, and prioritized or non-prioritized methods. In 

each case, a score, denoted by Ukℓ , is assigned, correspond-

ing to the comparison of the univariate or multivariate out-

come, denoted by V1k , for patient k under verum and V2ℓ 

for patient ℓ under placebo, as follows:

In a univariate approach, the repeated measurements 

are evaluated by constructing one summary measure per 

subject and per treatment period and by comparing these 

summary measures within a pair. On the other hand, a 

multivariate approach allows for the evaluation of the 

longitudinal outcomes by comparing the outcomes per 

time point t, either ordered in a prioritized way or not 

ordered (non-prioritized). In a prioritized approach for 

repeated measurements, the time points are prioritized 

by importance. For each pair, a score is assigned by apply-

ing the rule defined in (2) to the first-ranked time point. 

If and only if the score results in a tie, the next ranked 

time point is evaluated in the pair, continuing until the 

last time point [6, 13, 29, 34]. Furthermore, it is possible 

to consider the treatment periods of a subject as inde-

pendent, which ignores the cross-over effect and is called 

an unmatched approach, leading to asymptotically valid 

results. Alternatively, pairs can be restricted to compare 

treatment periods only within subjects, in a matched 

approach.

After choosing the desired variant and assigning a score, 

various statistics can be constructed. An easy to interpret 

and frequently used treatment effect size, is the so-called 

net treatment benefit ( � ). For example, the unmatched net 

treatment benefit is defined as the sum of scores divided by 

the total number of pairs:

�e range is [−1,+1] , which is easy to interpret as the dif-

ference of probability that a random subject will do better 

on active treatment than on placebo and vice versa.

Various testing procedures are available for the GPC 

variants. Due to the small sample sizes, permutation tests 

based on the null hypothesis are used for unmatched 

approaches:

with F̄i. defining the distribution of the outcome in treat-

ment group i. For matched variants, the conditional sign 

test is used to take ties and also the small sample size into 

(2)Ukℓ =

1, if V1k > V2ℓ

−1, if V1k < V2ℓ

0, if V1k = V2ℓ,

�unm =

1

n2

n∑

k=1

n∑

ℓ=1

Ukℓ.

H0 : F̄1. = F̄2.,
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account (see Coakley and Heise [9]; Dixon and Massey 

[7]; Fagerland [36]; Wittkowski [12] for more details).

GEE-like semiparametric model

Modelling fully the two types of covariance patterns pre-

sent in repeated-measures cross-over designs—within-

treatment period dependencies and between-treatment 

period dependencies—may be challenging in small sam-

ples. Generalized estimating equations (GEE) and, more 

generally, semiparametric methods, including those 

based on pseudo-likelihood, avoid the need for full like-

lihood specification for Gaussian and non-Gaussian data 

[23]. GEE-like models involves, for example, specifying 

pairwise densities for repeated measures, which substi-

tute the full likelihood with the product of each possible 

pair of measures [26]. A variety of other versions exists. 

Bias-corrected sandwich estimators are available for 

small sample sizes, which lead to consistent estimators 

when correctly specified [24]. Assuming independence 

of the between- and within-period covariance structures, 

the between-period dependencies are modelled through 

fixed subject effects, while the within-period dependen-

cies are modelled using a residual covariance structure 

[21]. Considering i = 1, 2 for the treatment assignment, 

k = 1, . . . ,N  for the subjects and t = 1, . . . , 4 for the 

time points, the blister count Xikt ∼ Poisson(�ikt) and the 

dichotomized blister outcome Yikt ∼ Bernoulli(πikt) are 

modelled by:

where θikt is either �ikt or πikt , and with Gik a treatment 

group indicator, Pk a period indicator and Tijkt a dis-

crete time indicator. In these models, a Wald test for 

an overall treatment effect can be used, by evaluating a 

linear combination of parameters involving the treat-

ment group indicator Lβ = 0 . �e treatment effect is 

expressed as the odds ratio for the dichotomized blister 

outcome and the rate ratio for the count outcome. �e 

SAS procedure GLIMMIX supports repeated-measures 

designs, including cross-over designs, and hence can 

accommodate carry-over effect evaluation, while accom-

modating missing data. �e results are valid when data 

is missing at random, provided likelihood-based estima-

tion is used. When a non-likelihood estimation method is 

used, it is advisable to pre-process the data using multiple 

imputation.

(3)

logit (θikt) = β0 + β1Gik + β2Pk +

5∑

j=3

βjTijkt + β6GikPk +

9∑

j=7

βjGikTijkt +

12∑

j=10

βjPkTijkt ,

Model averaging (MA)

It is often seen that, for the analysis of longitudinal 

data, parametric models are the most powerful meth-

ods for hypothesis testing [22]. However, the meth-

ods require models to fully specify the time changing 

aspects of the data as well as the variance across indi-

viduals (at a minimum, for discrete data). For studies 

with small samples and relatively little previous infor-

mation about the data structure, finding an optimal 

model for the system may be challenging [3, 18]. One 

way to circumvent these limitations in small samples is 

to pre-define a range of models and to use a weighted 

average of metrics of interest across all models [1]. �is 

approach is sometimes also called ensemble modeling.

In model averaging (MA), the weighting of the mod-

els is typically done according to their fit to the data 

(AIC, for example), but other weight factors can be 

used. �ese approaches are commonly applied in, for 

example, weather forecasts, where numerous models 

are used to make predictions of the coming weather. 

�ose predictions are then weighted to give one single 

prediction, including the uncertainty of that prediction, 

based on model fits to available weather data.

A standard model averaging procedure to identify 

treatment effects in a clinical trial would involve:

• Predefining models that fit to the data

• Determining the weights for each of the models 

according to model fit to data. For example, the 

weight wq for the Mq model in the pool of candi-

date models M ( M = {M1, . . . ,MQ} ) models could 

be determined according to 

• Computing effect measures and uncertainty of 

those effect measures using a weighted prediction 

from the candidate model set.

Results and recommendations

Count outcomes

For count data, the number of blisters from the original 

study of Wally et al. [35] was used as the outcome vari-

able. For the analysis, the parametric, semiparametric, 

(4)wq =

e−
1

2
AICq

∑Q
q′

=1
e
−

1

2
AICq′
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and nonparametric methods that have been introduced 

in Sects.  “Nonparametric marginal model (NMM)—

nparLD”, “Generalized pairwise comparisons (GPC) 

variants”, “GEE-like semiparametric model” and “Model 

averaging (MA)”– were compared, namely NMM 

(nparLD), GPC Variants, GEE-like models, and model 

averaging.

Firstly, it was found that the type-I error is controlled 

by almost all methods except for model averaging and 

matched GPC approaches. For the matched GPC mod-

els this is due to the fact that the number of pairs is too 

small, as the conditional sign test requires at least 15 

matched subjects (see Fagerland et  al. [11] or Coakley 

and Heise [7] for more details), which were not available 

within this data set.

It is important to note that the underlying null hypothe-

ses for the compared methods are different. For example, 

the null hypotheses accompanying the nonparametric 

methods are more restrictive compared to GEE-type and 

model averaging approaches. So, although an attempt 

was made to take a neutral position for deriving the rec-

ommendations, the fact that the underlying hypotheses 

are different must be kept in mind when interpreting the 

results provided in what follows.

Multivariate GPC methods (prioritized and non-pri-

oritized) resulted in the highest power values to detect 

a treatment effect. Prioritized GPC leads to the high-

est power for scenarios with a single time point with 

a treatment effect (i.e., Scenario 1 in Sect.  “Simula-

tion design and performance measures”), followed by 

model averaging. Non-prioritized GPC yields the high-

est power for scenarios with multiple time points with 

a treatment effect (i.e., Scenario 2 in Sect.  “Simulation 

design and performance measures”), closely followed 

by unmatched prioritized GPC. It should be noted that 

although prioritization was based on clinical grounds, it 

may have led to some bias towards favoring the method 

by design (see Verbeeck et  al. [33] for more details). 

Matched GPC approaches resulted in lower power val-

ues than unmatched counterparts. It should be noted 

that work by Fagerland et al. [11] suggests that matched 

GPC approaches only lead to meaningful results with a 

sample size of about N > 15 . Within-period and within-

subject dependence modeling in a cross-over trials using 

a GEE-type model do not produce a distinct advantage 

over nonparametric methods. �e power is comparable 

to matched GPC and lower than unmatched GPC; also, 

there may be convergence problems. Parametric model 

averaging approaches are computer intensive and do not 

lead to higher power compared to nonparametric GPC 

variants, but on the other hand, similarly as the GEE-

like semiparametric model, they allow for evaluating if a 

carry-over or a period effect is present.

�e nonparametric marginal model (NMM), which is 

implemented in the R package nparLD, can be used for 

testing the interaction effect between treatment and time. 

Hence, this means that NMM is suitable for detecting 

differences between groups regarding the longitudinal 

profiles. At this point it would have been interesting to 

compare GEE-type models and model averaging models 

with NMM, since these approaches can also test interac-

tion effects. However, since such sort of comparative sim-

ulations have not been carried out, no recommendations 

for evaluating differences between profile lines are pro-

vided. However, the results of the simulations that have 

been carried out for NMM are briefly summarized as fol-

lows. �e simulations have shown that the nonparamet-

ric marginal model (NMM) is good at detecting a profile 

with a peak (i.e., a single time point with a treatment 

effect), yet much less so for a longitudinal profile with a 

treatment effect on multiple time points. Additionally, 

the nonparametric marginal model requires to test each 

treatment period separately and thus does not allow for 

considering a cross-over effect.

Binary outcomes

�e primary endpoint of the study conducted by Wally 

et al. [35] was the proportion of patients with more than 

40% reduction from baseline in the number of blisters 

after 4 weeks of treatment. �is binary outcome was also 

chosen as the starting point for the simulations. Overall, 

we evaluated the same methods as for the count out-

come (see Sect.  “Count outcomes”) in order to make a 

thorough empirical comparison in terms of the resulting 

type-I error and power. �e methods under consideration 

were NMM, GPC variants, GEE-type, and model averag-

ing. Dichotomizing count data, as given by the number 

of blisters, leads to loss of granularity in the data. �is 

translates in our results to lower power values to detect a 

treatment effect in the dichotomized blister counts com-

pared to the raw blister counts. �erefore, most tested 

methodologies are more sensitive to detect a treatment 

effect using a count outcome compared to the usage of a 

binary outcome, as provided by dichotomization of blis-

ter counts (see [33] for more details).

NMM is a liberal testing procedure, and has higher 

power values when there is only one treatment visit with 

a treatment effect. Furthermore, it is limited by the fact 

that there is only two-sided testing possible. GPC con-

trols type-I error well, except for the non-prioritized 

unmatched version, possibly due to a high amount of ties 

due to dichotomization. Similarly to the count outcome, 

the unmatched versions lead to higher power values than 

the matched counterparts (see Sect.  “Count outcomes” 

for more details).
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For GEE-type semiparametric models, small-sample 

corrections are not necessary, given that the variance for 

a dichotomized count is closer to homoscedasticity com-

pared to count data. �e power is close to the matched 

GPC, but lower than the unmatched GPC. For model 

averaging, the difference between treatment and refer-

ence groups in terms of the proportions of the dichoto-

mized outcome was used, which is commonly referred 

to as a �� effect measure. �e type I error is controlled; 

with respect to power, MA outperforms the other com-

petitors in scenarios with a single time point with a treat-

ment effect, while it is comparable to GPC in scenarios 

with multiple treatment effects.

Ordinal outcomes

For ordinal outcomes, the nonparametric rank-based 

marginal model (NMM) using the R package nparLD was 

compared with various generalized pairwise comparisons 

(GPC) methods. Especially for ordinal outcomes, only 

these two approaches were included in the comparison, 

since they are based on nonparametric approaches and 

are therefore very suitable for this type of outcome.

For the selected context of the EB data set, the ordinal 

outcomes were given by the visual analogue scale (VAS). 

�is score was used for the outcomes “pain” and “pruri-

tus” and ranged from 0 (no pain/pruritus) to 10 (worst 

pain/pruritus imaginable) with an increment of 0.5 [35]. 

Note, that the visual analogue scale usually consists of a 

line of 100  mm in length, with anchor descriptors such 

as “no pain/pruritus” and “worst pain/pruritus imagina-

ble” where patients indicate their level of pain or pruri-

tus. Importantly, VAS scores are considered as being 

measured on an ordinal scale since differences can-

not be interpreted in an uniform, meaningful way. For 

example, in clinical practice, a decrease in VAS from 

8 to 6 might be interpreted differently than a decrease 

from 3 to 1 [16]. We have already outlined the basic con-

cept of the two methods NMM and GPC in more detail 

in Sects.  “Nonparametric marginal model (NMM)—

nparLD”  and “Generalized pairwise comparisons (GPC) 

Variants”, respectively.

For the aforementioned study design of a longitudinal 

cross-over study, we attempted to select statistical meth-

ods that could reasonably account for this study type. 

However, it must be noted that the NMM method imple-

mented in nparLD can only handle the periods separately 

at this stage. �us, each treatment period is considered 

separately and the interaction effect of the considered 

outcome of the VAS score is calculated by a rank-based 

test statistic for each of the two periods separately. All 

evaluated methods control the type-I error, except for 

the matched GPC variant. Among all tested methods, 

the prioritized GPC variant achieved the highest power. 

�e name of the method indicates, however, that speci-

fying a clinically relevant and meaningful prioritization 

is a key requirement for using this method. Since for 

NMM, periods had to be evaluated separately, the sample 

sizes were particularly low (i.e., a sample size of N = 6 

patients). However, NMM could still achieve very high 

power values, suggesting that this method can be recom-

mended also for very small sample sizes. �e longitudinal 

structure can be analyzed properly with both unmatched 

GPC variants and NMM. Furthermore, the NMM is also 

capable of detecting interaction effects (i.e., detecting sig-

nificant differences between longitudinal profiles). As a 

conclusion, the results of Geroldinger et al. [14] indicate 

that especially for longitudinal data in a small sample size 

cross-over study, we can derive some recommendations 

indeed. At the same time, however, perhaps even more 

than in the binary and count outcome cases, a trade-off 

must be made between increasing power and analyzing 

period-specific effects.

Real‑life data application

�e given results are based on several simulation stud-

ies, which were performed in the works of Geroldinger 

et  al. [14] and Verbeeck et  al. [33], also using real-life 

data examples. Instead of just duplicating the cor-

responding subsections of those papers, the present 

manuscript provides an application-oriented summary 

of the results and derives recommendations for prac-

tice. Still, however, it should be emphasized that these 

recommendations regarding the three analyzed out-

comes (count, binary, and ordinal) are based on the 

original data set of the study by Wally et al. [35]. In the 

sequel, we therefore briefly illustrate the application 

of our recommendations (Figs. 4, 5 and 6) to this con-

crete data example: �e primary focus in the Diacerein 

trial conducted by Wally et al. [35] was to use a statis-

tical method that maximizes power, since the recruit-

ment of study subjects in Epidermolysis Bullosa—and 

in rare diseases in general—is usually quite difficult. 

�erefore, the sample size is very small. In addition, 

the time point immediately after the end of treatment 

is the clinically most relevant one, assuming that there 

is the peak of the therapeutic effect. Yet, also sustained 

long-term effects of the treatment are of interest, and 

therefore, the last time point (i.e., at the end of follow-

up) is relevant, too. �us, a prioritization of time points 

would be desirable. By contrast, accounting for period-, 

interaction, and/or carry-over effects is somewhat less 

important, since some measures to avoid such effects 

have been taken already at the design stage. �us, as 

an example, we will now demonstrate how to use our 

recommendations to identify an appropriate analysis 

method for ordinal outcomes: In the real-life data set 
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Fig. 4 Recommendations for count outcomes in cross-over rare disease trials

Fig. 5 Recommendations for binary outcomes in cross-over rare disease trials

Fig. 6 Recommendations for ordinal outcomes in cross-over rare disease trials
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of Wally et  al. [35], ordinally scaled outcomes were 

pain, pruritus, and quality of life. According to Fig.  6, 

this would mean that we could use the prioritized 

unmatched GPC variant due to the desired prioritiza-

tion, which would also be recommended for the maxi-

mization of the power. Analogously, due to the given 

clinical focus, we would obtain the respective methodo-

logical recommendations for the count and binary out-

come by the respective figures (Figs. 4 and  5) as well.

Finally we would like to emphasize once more that 

in other real-life data applications one might put more 

emphasis on period- or carry-over effects, and depend-

ing on this decision, different recommendations and 

methods may be applied. In summary, this implies that 

one can refer to these given recommendations in case 

of a longitudinal study design with cross-over. Any 

number of measurement time points within the respec-

tive treatment periods can be dealt with in this case. 

When applying these statistical recommendations, it 

is important to consider possible clinical aspects that 

appear to be crucial for the real-life data application. 

�ese may include whether it would be beneficial to 

prioritize study time points, to give greater considera-

tion to carry-over or period effects, or to emphasize 

the importance of maximizing the statistical power of 

the applied method. Indeed, depending on this deci-

sion, different methods are recommended, as shown in 

the respective figures (Figs. 4, 5 and 6) for the different 

scales of the outcome variables.

Discussion

�e aim of this work was to provide some practically ori-

ented guidance regarding the use of different statistical 

methods for small sample sizes in a cross-over trial. For 

this purpose, the starting point was a study by Wally et al. 

[35], in which data on count, binary and ordinal outcomes 

was collected. Previously, neutral simulation studies that 

are based on this data set have been performed and pub-

lished (see Geroldinger et al. [14] and Verbeeck et al. [33] 

for more details, in particular for real-life data examples). 

To provide a more condensed summary of the recom-

mendations that can be derived from these rather tech-

nical publications, we provide this guidance document 

regarding the analysis of trials with a cross-over design 

with repeated measures. It should be mentioned that those 

recommendations are given on the basis of one single data 

set, and simulations based on permutations of this original 

data. Future work should be aimed at including also other 

data sets to further validate the given recommendations.

Overall, different statistical state-of-the-art methods 

were compared, including parametric, semiparametric, 

and nonparametric approaches. �e methods were 

selected by an international consortium within the so-

called EBStatMax project. We compared rank-based and 

nonparametric methods, namely the generalized pairwise 

comparison (GPC) variants (univariate, multivariate, 

matched, unmatched, prioritized and non-prioritized) 

and inference based on a nonparametric marginal model 

(NMM, as implemented in the R package nparLD), the 

semiparametric GEE-like model and parametric model 

averaging approaches. Overall, for all three tested levels 

of measurement (count, binary and ordinal), it could be 

demonstrated that the power and the results strongly 

depend on the level of measurement of the outcome.

Based on our simulations, especially the prioritized 

unmatched GPC method was able to achieve particularly 

high power values and could lead to good results in many 

scenarios. �is multivariate approach allows to analyze 

count, binary and ordinal outcomes and to prioritize them 

by time point. For each pair, a score is assigned to the first 

ranked time point. If and only if the score results in a tie, the 

next ranked time point is evaluated, continuing until the 

last time point. �e prioritization of the time points there-

fore has a big impact on power. �is makes sense, since the 

prioritization that was specified in the GPC closely corre-

sponds to the simulation settings (i.e., in the simulations, 

the effect was added in each scenario at the post treatment 

visit, which was, on the other hand, evaluated first in the 

prioritized analyses). However, we would like to emphasize 

that the reason for setting up the simulations and prioritiz-

ing with the GPC method in this way were clinical con-

siderations and not the intention to favor this particular 

method. It should be emphasized that a different prioritiza-

tion could also lead to inferior performance.

That being said, it is noteworthy that the NMM 

approach has a high power that is quite close to the 

prioritized GPC method, at least in some cases for 

example within ordinal outcome settings, even though 

the simulations were performed with a smaller sam-

ple size (group sizes of 6 and 7), which is due to the 

separate testing of the time periods. Future research 

could address this aspect and analyze parallel group 

designs in detail using these tested methodologies 

and to derive further recommendations for this study 

design. However, it should be noted that NMM as 

implemented in nparLD does not account for cross-

over effects, because of the separate testing procedure 

of the treatment periods. Yet, NMM can account for 

the longitudinal profile line information and interac-

tion effects. GEE-type models and model averaging 

might also be used to test interaction effects. Future 

work could link these to derive recommendations in 

this respect as well.
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Furthermore, note that the dichotomization of count 

data leads to a loss of granularity in the data. It was 

found that all tested methods had less power in the 

binary setting than in the count data counterpart. But, 

model averaging led to similarly high power values as 

the prioritized unmatched GPC method, especially for 

the binary outcome, where other tested methods per-

formed worse. Both MA and GEE-like models can take 

account of period or carry-over effects. Regarding the 

power of GEE and matched GPC approaches, however, 

it was found that they performed worse than compara-

tive methods such as the prioritized unmatched GPC. 

For matched GPC approaches we are suggesting that it 

may not be appropriate for less than 15 subjects.

In summary, our previous analyses, which constitute 

the basis for the recommendations provided in this 

paper, indicate that in certain scenarios some methods 

work better than others, yet there is no single method 

that outperforms the others in all scenarios. �ere-

fore, Fig.  7 has no decision tree structure, but reflects 

a balance between different aspects (e.g., prioritiz-

ing relevant time points, or maximizing power). As an 

applied researcher being confronted with the task of 

choosing the appropriate statistical analysis method in 

such a rare disease cross-over setting, it must therefore 

be decided at the outset which priorities should be set 

for the statistical analysis. Altogether, Fig. 7 shows the 

overall recommendations in a simplified and combined 

way, thereby summarizing the outcome-specific recom-

mendations and corresponding Figs. 4, 5 and 6.

It can be concluded that a balance between achieving 

high power, accounting for cross-over, period or carry-

over effects, and prioritizing clinically relevant time 

points must be found.
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