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Abstract

Epilepsy and autism often co- occur in genetic developmental and epileptic 

encephalopathies (DEEs), but their underlying neurobiological processes remain 

poorly understood, complicating treatment. Advances in molecular genetics and 

understanding the neurodevelopmental pathogenesis of the epilepsy–autism 

phenotype may lead to mechanism- based treatments for children with DEEs 

and autism. Several genes, including the newly reported PPFIA3, MYCBP2, 

DHX9, TMEM63B, and RELN, are linked to various neurodevelopmental 

and epileptic disorders, intellectual disabilities, and autistic features. These 
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1  |  INTRODUCTION

Epilepsy and autism spectrum disorder (ASD) frequently 

co- occur during early childhood. The prevalence of 

epilepsy in individuals with autism, and vice versa, 

significantly exceeds reported estimates in the general 

population.1 In a systematic review of 74 studies, the 

overall period prevalence is 11% of epilepsy in autism and 

8% of autism in epilepsy,2 compared with a prevalence of 

1%–2% in the general population.3

Genetic developmental and epileptic encephalopathies 

(DEEs) constitute a group of conditions that often com-

bine early onset, drug- resistant seizures with a range of 

complex neurological and neuropsychiatric symptoms, in-

cluding ASD.4 Seizure onset typically precedes the clinical 

detection of ASD, although delays in developmental tra-

jectories may sometimes be observed earlier.5

Because the autism phenotype may not follow the 

usual developmental trajectories in DEEs, the diagnosis 

can be challenging. However, prompt recognition of ASD 

in children with DEEs is important, and timely diagnosis 

is crucial to allow appropriate early intervention.

The clinical presentation differs between patients with 

ASD who also have epilepsy and patients with DEEs who 

meet the criteria for ASD. In the former group, ASD is the 

primary diagnosis with co- occurring epilepsy, whereas in 

the latter group, DEE is the primary condition, and ASD 

symptoms are part of the broader neurodevelopmental 

impact of the underlying encephalopathy. These differ-

ences reflect variations in the severity and progression of 

Commission, Grant/Award Number: 

grant agreement no. 952455 findings underscore the clinical heterogeneity of genetic DEEs and suggest 

diverse neurobiological mechanisms influenced by genetic, epigenetic, and 

environmental factors. Mechanisms linking epilepsy and autism include γ- 

aminobutyric acidergic (GABAergic) signaling dysregulation, synaptic plasticity, 

disrupted functional connectivity, and neuroinflammatory responses. GABA 

system abnormalities, critical for inhibitory neurotransmission, contribute to 

both conditions. Dysregulation of the mechanistic target of rapamycin (mTOR) 

pathway and neuroinflammation are also pivotal, affecting seizure generation, 

drug resistance, and neuropsychiatric comorbidities. Abnormal synaptic 

function and connectivity further underscore the epilepsy–autism phenotype. 

New treatment options targeting specific mechanisms linked to the epilepsy–

autism phenotype are emerging. Genetic variants in potassium channel genes 

like KCNQ2 and KCNT1 are frequent causes of early onset DEEs. Personalized 

treatments like retigabine and quinidine have been explored with heterogeneous 

responses. Efforts are ongoing to develop more effective KCNQ activators and 

KCNT1 blockers. SCN1A genetic variants, particularly in Dravet syndrome, 

show potential for treatment of autistic symptoms with low- dose clonazepam, 

fenfluramine, and cannabidiol, although human trials have yet to consistently 

replicate animal model successes. Early intervention before the age of 3 years, 

particularly in SCN1A-  and tuberous sclerosis complex- related DEEs, is crucial. 

Additionally, targeting the mTOR pathway shows promise for seizure control 

and managing epilepsy- associated comorbidities. Understanding the distinct 

autism spectrum disorder phenotype in DEEs and implementing early behavioral 

interventions are essential for improving outcomes. Despite genetic advances, 

significant challenges persist in diagnosing and treating DEE- associated 

epilepsy–autism phenotypes. Future clinical trials should adopt precision health 

approaches to improve neurodevelopmental outcomes.

K E Y W O R D S

autism spectrum disorder, developmental and epileptic encephalopathies, epilepsy, newly 

reported DEE- associated genes, personalized treatment
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neurodevelopmental impairments, with DEEs typically 

involving more profound cognitive and functional deficits. 

Early onset genetic DEEs offer a valuable model for ex-

ploring the potential genetic connection between epilepsy 

and ASD.

It is well accepted that the co- occurrence of these 

two brain disorders is related to the disruption of shared 

neurodevelopmental pathways, possibly as a conse-

quence of a monogenic disorder.6 Specific changes in 

fundamental neurobiological processes are known to 

be involved in both disorders, such as ion channel be-

havior, synaptic function, and transcription regulation.4 

Furthermore, epilepsy- specific susceptibility mecha-

nisms can lead to neurobiological abnormalities related 

to ASD susceptibility.7

Recent advances in molecular genetics have revealed 

that single- gene variants can impact early brain develop-

ment, resulting in structural and functional changes that 

lead to an epilepsy–autism phenotype. Early molecular 

genetic diagnosis is crucial for enabling timely pharmaco-

logical intervention and reducing the global clinical bur-

den of DEEs. Whole- exome sequencing has become the 

primary molecular genetic testing method for children 

with DEEs.

Despite some recent advances, treating DEEs remains 

challenging. However, recent improvements in the un-

derstanding of the pathogenic mechanisms contributing 

to the epilepsy–autism phenotype associated with DEEs 

has raised hopes that targeted molecular therapies may 

enhance neurological outcomes for affected children. 

The aim of this article is to describe the epilepsy–autism 

phenotype in early onset genetic DEEs, to discuss the 

common pathogenic mechanisms linking these two dis-

orders, to provide a brief overview of the current status 

of mechanism- based treatment options for children with 

DEE- related epilepsy autism phenotype, and to discuss fu-

ture perspectives of research.

2  |  SEARCH STRATEGY

This article is based on peer- reviewed publications from 

January 2017 to March 2024. Searching PubMed for the 

words “epilepsy” and “autism” using the combining term 

“AND” returned 2246 possible articles (accessed March 

31, 2024). Our more refined search terms were “genetic 

developmental and epileptic encephalopathy” AND 

(as individual combinatory terms) “autism spectrum 

disorder”, “phenotype”, “treatment”, “gene therapy”, 

“targeted therapies”, “genes”, “gene function”, “loss 

of function”, “gain of function”, “diagnostic criteria”, 

“mechanisms”, and “neurobiology”. Selection criteria 

from full- text outputs were the novelty of study findings 

and their relevance to neurologists, with inclusion 

decided collectively by all authors. For clarity, relevant 

historical references outside the search timeframe were 

also included.

3  |  EPILEPSY–AUTISM 
PHENOTYPE IN DEEs

DEEs, including those with syndromic presentations, exhibit 

significant clinical variability that can include the presence 

of ASD features along with epilepsy and cognitive impair-

ment. The prevalence of ASD within DEEs is likely under-

estimated due to the absence of comprehensive diagnostic 

assessments utilizing gold- standardized tools such as Autism 

Diagnostic Observation Schedule, Second Edition  (ADOS- 

2) and Autism Diagnostic Interview -  Revised (ADI- R). 

Detailed clinical analysis showed a high prevalence of au-

tism in many DEEs, with a percentage of autistic features in 

>60% individuals with SCN1A- positive Dravet syndrome,8 

>50% for patients with KCN1B- related DEE,9 and up to 60% 

in children with NRXN1- related DEE.10

Genetic and clinical findings of the epilepsy–autism phe-

notype associated with DEE are summarized in Table 1.

Among the well- known DEEs, emerging studies are fo-

cusing on profiling ASD beyond the epilepsy phenotype, 

highlighting specific features of ASD in particular genetic 

conditions.

Large cohort studies have provided evidence of asso-

ciation between pathogenic gene variants and specific 

phenotype features, highlighting a wide range of possible 

scenarios even for the same gene.11 The ASD profile of pa-

tients with SCN1A- related Dravet syndrome is character-

ized by a relative preservation of social skills.12 In PCDH19 

Key points

• Early onset genetic DEEs offer a valuable model 

to explore the neurobiological process underly-

ing the epilepsy–autism phenotype.

• Common pathogenetic mechanisms linking 

these two disorders include function in 

synaptic plasticity, dysregulation of the GABA 

system, abnormal functional connectivity, and 

dysregulation of the mTOR signaling cascade 

and neuroinflammation.

• Mechanism- based treatment options for 

children with early onset genetic DEE- 

associated autism phenotype have the potential 

to improve overall quality of life.
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clustering epilepsy (PCDH19- CE), the ASD profile shows 

a specific phenotype, with the communication and social 

interaction domains mostly affected, and a low rate of 

hand stereotypies, sensory interests, and self- injuries.27,33 

In SYNGAP1- related DEE, ASD is mainly characterized 

by restricted interests and repetitive behaviors.25

The severity of ASD is often linked with the severity of 

intellectual disability (ID) and in some conditions, ASD is re-

lated to an earlier age at onset.34 These findings may suggest 

that early and severe epilepsy contribute to the deleterious 

consequences in addition to the impact of gene dysfunction.

Epilepsy and ASD can manifest different evolutions 

over time. In many genetic DEEs, such as Dravet syn-

drome,35 KCNQ2- related DEE,36 and PCDH19- CE, seizure 

frequency decreases with increasing age, whereas ASD, 

other behavioral disorders, and ID remain as the main 

clinical problems during adulthood.

ASD is increasingly linked to the genetic underlying 

pathophysiological mechanisms rather than being exclu-

sively related to epilepsy. Alterations in developmental 

trajectories during cortical neurogenesis are emerging as 

major contributors to the etiology of both autism and ep-

ilepsy phenotypes. Dysregulated neurogenesis programs 

may lead to impaired neuronal wiring. This has been 

documented through in vitro studies on induced plurip-

otent stem cells and organoids,37 as well as by means of 

morphometric analyses that document alterations in cor-

tical thickness, local gyrification index, and reductions in 

surface area in temporolimbic cortices,38 which are well 

known to be associated with ASD.

There is a well- recognized correlation between atypical 

mesiotemporal anatomy and autism. This correlation has 

been demonstrated through magnetic resonance imaging 

(MRI) and postmortem brain studies, revealing abnormal-

ities in the hippocampus, amygdala, and connected limbic 

structures in individuals with autism. In PCDH19- CE, pa-

tients displayed bilateral reductions in the local gyrification 

index within limbic cortical areas, including the parahippo-

campal and entorhinal cortex, as well as the fusiform and 

lingual gyri. Additionally, they exhibited altered diffusivity 

features in the underlying white matter. These morphomet-

ric abnormalities were more prominent in patients with an 

earlier onset of seizures, confirming the detrimental effects 

of early and severe epilepsy on a developing brain, in addi-

tion to the impact of the genetic variant on neurogenesis.38

4  |  NEWLY REPORTED DEEs 
ASSOCIATED WITH EPILEPSY–
AUTISM PHENOTYPE

The genetic causes of early onset DEEs are increasingly 

recognized, and new rare gene variants are described G
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expanding the field of genetic DEEs. Table  2 summa-

rizes the genetic and clinical findings of newly reported 

DEEs associated with epilepsy–autism phenotype. The 

following genes have been recently described and pro-

vide examples of a complex interplay between genes and 

neurodevelopment.

PPFIA3 encodes protein tyrosine phosphatase, 

receptor- type, F- polypeptide- interacting- protein- alpha- 3, 

involved in synapse formation and function, synaptic ves-

icle transport, and presynaptic active zone assembly. A 

syndromic neurodevelopmental disorder characterized by 

developmental delay, ID, dysmorphisms, abnormal head 

size, hypotonia, ASD or autistic features, and epilepsy 

has been reported in cohort of 20 individuals with patho-

genic variants in PPFIA3. A study of transgenic fruit flies 

showed that pathogenic PPFIA3 variants are dominant- 

negative loss of function (LoF) alleles that perturb multi-

ple developmental processes and synapse formation.39

MYCBP2 encodes an E3 ubiquitin- protein ligase with 

evolutionarily conserved functions in axon development. 

A neurodevelopmental disorder characterized by corpus 

callosum abnormalities, developmental delay, ID, epi-

lepsy, and autistic features has been described in a cohort 

of eight patients with de novo LoF MYCBP2 variants.40

An in  vivo animal model (Caenorhabditis elegans) 

obtained with CRISPR gene editing showed that these 

variants result in abnormal axon development, increased 

axonal autophagosome formation, and abnormal behav-

ioral habituation.40

The DHX9 gene encodes for a BRCA1- interacting nu-

clear helicase. Two DHX9- associated disease traits have 

been recently described, including neurodevelopmen-

tal disorders and axonal Charcot–Marie–Tooth disease 

in 20 individuals with de novo, ultrarare, heterozygous 

missense variants with LoF effect. Functional studies 

demonstrated that pathogenic DHX9 variants cause ab-

normal DHX9 cellular distribution and in some cases alter 

helicase adenosine triphosphatase activity. The Dhx9−/− 

mouse model exhibited behavioral, neurological, and 

growth abnormalities.41

TMEM63B encodes for a stretch- activated ion chan-

nel. De novo heterozygous TMEM63B variants cause early 

onset DEEs, all associated with white matter disease, 

corpus callosum abnormalities, and variable cortical, 

cerebellar, and hematological abnormalities. The neuro-

logical phenotype is severe and includes autistic features. 

Variants affecting transmembrane domains of the chan-

nel demonstrated inward leak cation currents across the 

mutated channel even in isotonic conditions in trans-

fected Neuro2a cells, and the response to hypo- osmotic 

challenge was impaired.42

RELN encodes for reelin, a large extracellular protein 

that plays several roles in brain development and function 

by regulating neuronal migration, laminar organization, 

dendritic morphogenesis, and neurotransmission. In 

humans, biallelic RELN pathogenic variants have been 

initially associated with a variant of lissencephaly with 

cerebellar hypoplasia.44 The phenotypic spectrum has ex-

panded since and monoallelic RELN variants have been 

associated with moderate frontotemporal lissencephaly, 

less severe than in biallelic individuals, with normal cer-

ebellar structure and a constant association with ID and 

severe behavioral dysfunction.43

Because genetic DEE- associated epilepsy and ASD 

phenotypes are characterized by a clinical heterogeneity, 

it is reasonable to think that many different neurobiologi-

cal mechanisms may be responsible, interacting together, 

and with a complex interplay between genetic, epigenetic, 

and environmental factors.

5  |  MECHANISMS THAT 
POTENTIALLY LINK EPILEPSY 
AND AUTISM IN DEEs

The identification of specific genes involved in DEEs 

and ASD has led to the recognition of shared molecular 

pathways.4 Causal mechanisms for both conditions 

include abnormalities in fundamental neurobiological 

processes such as γ- aminobutyric acidergic (GABAergic) 

signaling, synaptic plasticity, functional connectivity, 

and neuroimmune interactions.45 Such mechanisms may 

be grouped into abnormalities of ion channel behavior, 

synaptic function and structure, and the mechanistic 

target of rapamycin (mTOR) pathway.46,47 Disruptions 

within these processes can contribute to both DEEs and 

ASD, highlighting the complex interplay between genetics 

and neurodevelopment. These abnormalities underscore 

the intricate interplay of various factors contributing to 

the epilepsy–autism phenotype.

5.1 | Dysregulation of GABA system

GABA is the most abundant and widely distributed inhibi-

tory neurotransmitter in the brain. Several clinical, neuro-

imaging, and neuropathological studies have shown that 

both epilepsy and ASD display abnormalities in GABA 

neurotransmission.48,49 This neurodevelopmental defect 

in GABAergic circuitry is likely the common mechanism 

leading to an excitatory imbalance occurring in both dis-

eases, possibly also explaining their high comorbidity rate.

The role of changes in GABA neurotransmission asso-

ciated with epilepsy is very well known and has recently 

received increasing attention. Modulating GABAergic 

signaling remains an essential approach for epilepsy 
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treatment. GABAergic signaling potentiation is the car-

dinal mechanism of many antiseizure medications (e.g., 

benzodiazepines/phenobarbital, felbamate vigabatrin, 

tiagabine, gabapentin, valproate). Conversely, drugs 

blocking GABA type A receptors (GABAARs; bicucull-

ine, pentylenetetrazol) can provoke seizures in experi-

mental animal models. Furthermore, several hundred 

genetic variants in GABAAR subunits have been associ-

ated with epilepsy.50

Similarly, in past decades, increasing evidence con-

firmed the role of altered inhibitory/excitatory signaling 

in ASD. Functional neuroimaging and magnetic reso-

nance spectroscopy studies documented the reduction of 

GABAAR activity and an altered excitatory/inhibitory sig-

naling (lower GABA/glutamate ratio) in both adults and 

children with ASD.51,52 Studies in both animal models and 

postmortem human samples confirmed the alteration of 

GABAergic neurons and circuits in ASD, further support-

ing the hypothesis that GABA/glutamate abnormalities 

underlie sensory challenges in ASD.53 Finally, human ge-

netic studies indicate an association between ASD, genes 

for GABAAR subunits, and genes controlling GABAergic 

neuron development or synaptic function.

The impaired GABAergic converging pathway for epi-

lepsy and ASD may result from the dysfunction of differ-

ent genes, with either an indirect (presynaptic) or direct 

(postsynaptic) mechanism.

Pathogenic variants in MECP2 (Rett syndrome) cause 

an indirect decrease in the expression of the GABRB3 

gene.54 Variants in other DEE genes (STXBP1, DNM1, 

PRRT2, SCN1A, and TSC2), with increased susceptibility 

to ASD, also indirectly impair GABA release through a 

presynaptic mechanism.55,56

Variants in genes coding for different GABAAR sub-

units (GABRA1, GABRG2, GABRB2, GABRB3) impair 

GABAergic signaling via postsynaptic mechanisms, al-

tering the channel gating efficiency or the receptor ex-

pression. GABRA1 variants with a gain of function (GoF) 

effect have been reported in severe DEEs.

Variants in the GABRB3, GABRD, and GABRA1 genes 

have been phenotypically evaluated in cohort studies.57–59 

In all cases, both LoF and GoF were observed, the LoF 

variant leading to a milder phenotype with the largest 

ASD and attention- deficit/hyperactivity disorder comor-

bidities (up to 82%; Danish Epilepsy Center international 

registry). Neuronal chloride regulation, controlled by 

KCC2 and NKCC1 cotransporters, dynamically modulates 

GABAergic inhibition. Dysregulation of these transport-

ers is linked to both ASD and epilepsy.60,61

The GABA transporter encoded by the SLC6A1 gene 

plays a critical role in the reuptake of GABA from the 

synaptic cleft, thereby maintaining inhibitory neuro-

transmission homeostasis.62 Genetic variants in SLC6A1 

can impair GABA clearance, leading to altered synaptic 

signaling, which is associated with the development of 

epilepsy and neurodevelopmental disorders such as ASD, 

due to disrupted inhibitory–excitatory balance in neuro-

nal circuits.63

5.2 | Dysregulation of mTOR signaling 
cascade and neuroinflammation

Dysregulation of the mTOR pathway and 

neuroinflammation play pivotal roles in the complex 

landscape of epileptogenesis, extending seizure generation 

to encompass drug resistance and neuropsychiatric 

comorbidities, including the epilepsy–autism phenotype. 

This multifaceted process arises from a confluence of 

genetic and acquired factors, leading to a cascade of 

pathological changes that disrupt brain homeostasis.64

Recent advances in our comprehension of epilepto-

genesis highlight the need to target specific cellular and 

molecular pathways to interfere with its progression and 

associate comorbidities. Notably, both mTOR dysregu-

lation and neuroinflammation have emerged as critical 

players, evident in human brain specimens from drug- 

resistant structural epilepsies and corresponding animal 

models.65,66 Encouragingly, therapeutic interventions 

aimed at mitigating either mTOR hyperactivation or aber-

rant neuroinflammatory responses have shown promising 

efficacy.65,67 Interestingly, the involvement of both mTOR 

and immune dysregulation in ASD is also an area of active 

research.68–70

mTOR and neuroinflammation are functionally in-

tertwined at various levels. In animal models mimicking 

structural epilepsy etiologies, mTOR and neuroinflam-

mation are upregulated in the same brain regions and 

cell types, activating convergent molecular mechanisms 

that greatly contribute to seizures, neuropathology, and 

comorbidities, including ASD.65 Additionally, mTOR 

signaling modulates intracellular pathways and the ex-

pression of interleukins and their receptors in immune 

cells, influencing immune effector cell responses and 

functions.71

Hyperactivation of mTOR signaling may disrupt proper 

differentiation and function of both innate and adaptive 

immune cells.71 mTOR also regulates transcription fac-

tors involved in inflammatory and anti- inflammatory 

gene transcription, including NF- κB, STAT3, HIF1α, and 

PPARγ, with a recognized direct role in the activation of 

inflammatory pathways in microglia. Reciprocally, cyto-

kines and toll- like receptor ligands, central activators of 

the neuroinflammatory cascade in epilepsy, also induce 

mTOR signaling.72 Excessive activation of mTORC1 in 

glial cells and neurons has been associated with decreased 
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activity of two crucial cellular pathways, the ubiquitin–

proteasome system and autophagy.65,73,74 Dysfunction in 

these systems leads to the accumulation of damaged or-

ganelles and proteins, activation of the inflammasome, 

and heightened oxidative stress. Moreover, experimental 

evidence indicates that impaired autophagy in microg-

lia exacerbates neuroinflammation induced by various 

stimuli, highlighting its role in modulating inflammatory 

processes.75

Hyperactivation of mTOR has also been linked to cel-

lular senescence.76,77 Notably, senescent cells undergo 

changes in gene expression that result in the senescence- 

associated secretory phenotype, which chiefly includes 

pro- inflammatory cytokines (i.e., IL- 1β, IL- 6, IL- 8) and 

matrix metalloproteinases (MMPs), thus contributing to a 

chronic inflammatory state.78

Preclinical data support further attempts to modu-

late seizures and epileptogenesis by targeting mTOR 

activity and neuroinflammation.64,65,79 Further research 

is needed to directly compare the efficacy and safety of 

different inhibitors in monotherapy versus combination 

therapy in patients with epilepsy associated with hyper-

activation of the mTOR pathway. For neuroinflamma-

tion, a very limited number of proof- of- concept clinical 

studies, or case report studies, have provided initial evi-

dence of efficacy of some repurposed anti- inflammatory 

drugs against drug- resistant epilepsies caused by mTOR 

pathway genes.65 The combination of drugs targeting 

mTOR and pathogenic inflammatory mediators may 

maximize the therapeutic effects of each treatment 

alone. In this context, gaining a deeper understand-

ing of the cellular and molecular interactions between 

mTOR and neuroinflammation in DEEs may shed light 

on the underlying pathophysiological mechanisms of 

the epilepsy–autism phenotype and provide therapeutic 

avenues.65

5.3 | Abnormal functional connectivity

Networks with altered functional connectivity are 

increasingly recognized as underlying the co- occurrence 

of epilepsy and ASD,80,81 and one example is the epilepsy–

autism phenotype in the context of tuberous sclerosis 

complex (TSC).82–86 Interestingly, pathological brain 

connectivity patterns have been identified in individuals 

with TSC, and ASD may reveal neurophysiological 

markers, facilitating early intervention.87 Notably, research 

by Sato et al. suggests that white matter microstructural 

integrity is linked to connectivity dysfunction, which 

underlies co- occurring neurodevelopmental disorders.83 

Evidence indicates that large- scale network deviations 

are associated with both ASD and mTOR- related 

connectopathy (characterized by frontocorticostriatal 

hyperconnectivity and rescued by mTOR inhibition), as 

recently demonstrated using resting- state functional MRI, 

electrophysiology, and computational modeling in Tsc2 

haploinsufficient mice. Sleep disturbances are a prevalent 

neurological symptom and can diminish the quality 

of life in TSC patients. Examining atypical functional 

connectivity in TSC may elucidate novel mechanisms 

for sleep dysfunction, as reported in recent experimental 

models.88 Moreover, reduction in connectivity has been 

documented also in a SYNGAP1 rat model,89 in Dravet 

syndrome,90 in SCN8A- related epilepsy,91 and in STXBP1 

encephalopathy.92

5.4 | Impaired synaptic plasticity

Synaptogenesis begins during prenatal development 

at approximately the 20th week of gestation. Synapse 

formation peaks during infancy, with synaptic density 

reaching its highest point at approximately 2–3 years 

of age. Subsequently, a phase of synaptic pruning 

occurs during childhood and adolescence, refining and 

strengthening the most relevant connections while 

eliminating redundant ones, thus shaping the mature 

neural circuitry of the brain.93 Synaptic connectivity 

plays a pivotal role in various developmental processes 

within the nervous system. During neural differentiation, 

the formation of synapses facilitates the specialization 

of neurons into distinct cell types, guiding them toward 

specific functions within neural networks. Additionally, 

synaptic connections support the neuronal migration. 

As neural circuits begin to be established, synaptic 

connectivity enables the communication and coordination 

of neuronal activity, which is essential for the refinement 

and maturation of functional brain networks. This 

time window of synaptogenesis, like all steps of brain 

development, is a window of vulnerability to both genetic 

and environmental factors.94

Accumulating data on synaptic abnormalities in ASD, 

including postmortem studies, animal models, and neu-

roimaging findings, have raised concerns about the role 

of synapses in the neurobiology of ASD.95 In the case of 

epilepsy, there is obviously aberrant synaptic activity con-

tributing to the generation and propagation of seizures. 

Interestingly, gene- regulating synaptic functions have 

been described in patients with both ASD and epilepsy.4 

This could be in children with ASD who develop epi-

lepsy or in patients with DEEs who could also have ASD 

(Figure 1).

Pathogenic gene variants of synaptic vesicle cycling 

(SVC) disorders that have been described in ASD and ep-

ilepsy could affect one of the specific subprocess of SVC, 
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including vesicle trafficking (e.g., KIF1A and GDI1), 

clustering (e.g., TRIO, NRXN1, and SYN1), docking and 

priming (e.g., STXBP1), fusion (e.g., SYT1 and PRRT2), 

or reuptake (e.g., DNM1, AP1S2, and TBC1D24).4,96

Environmental factors may also play a role in the 

emergence of ASD and epilepsy. Inflammation during 

brain development can disrupt the formation of syn-

apses. Inflammatory processes can lead to a decrease 

in synapse formation and an abnormal morphology of 

developing synapses.97 During pregnancy, maternal im-

mune responses with cytokine release during prenatal 

inflammation such as upon exposure to influenza viruses 

may affect the developing fetal brain and contribute to 

the development of ASD.98 Although epidemiological 

evidence further strengthens the link, prenatal inflam-

mation is more a risk factor or a contributing factor 

than a cause of ASD. Animal studies also demonstrate 

ASD- like behaviors in offspring exposed to prenatal 

inflammation.68,99,100 Interestingly, maternal immune 

activation is also a risk factor for epilepsy. Using poly-

inosinic–polycytidylic acid to induce maternal immune 

activation in mice in which hippocampal kindling was 

used to assess epilepsy propensity and sociability test 

to evaluate autismlike behavior in the offspring, it has 

been shown that proinflammatory cytokines have differ-

ent effects. Both IL- 6 and IL- 1β are necessary for prim-

ing offspring for epilepsy, and IL- 6 was confirmed in its 

role in inducing autismlike behavior.101

6  |  EARLY USE OF NEW 
THERAPEUTIC OPTIONS

6.1 | KCNQ2 and KCNT1

Genetic variants in potassium channel- encoding genes 

are among the most frequent causes of early onset 

DEEs.102 Among them, KCNQ2-  and KCNT1- related 

disorders represent two paradigmatic DEEs in which 

personalized treatment approaches (with retigabine 

and quinidine, respectively) have been attempted. The 

KCNQ2 activator retigabine (ezogabine), which was ap-

proved for clinical use as an add- on treatment of focal 

seizures in adults in 2011, was also shown to counter-

act the functional consequences of KCNQ2 LoF vari-

ants in vitro103 and attenuate drug- induced seizures in 

animal models of KCNQ2 dysfunction.104 Moreover, 

retigabine treatment also rescued neuronal excitability, 

juvenile seizure- related death, and ASD- related behav-

ioral abnormalities (hyperactivity) in mice in which the 

gene for the neuronal scaffolding protein Ank2 was con-

ditionally deleted in cortical and hippocampal excitatory 

neurons.105 However, although early treatment with 

retigabine improved seizure and behavior phenotypes 

in children with KCNQ2- related DEE,106,107 with drug 

weaning resulting in clear clinical worsening, a recent 

clinical trial with a pediatric formulation of retigabine 

has been terminated prematurely because of difficulties 

F I G U R E  1  The importance of 

mechanistic target of rapamycin (mTOR) 

signaling and neuroinflammation in 

causing the epilepsy–autism phenotype. 

Such potentially different neurobiological 

mechanisms that can all produce 

an epilepsy–autism phenotype will 

likely require different therapeutic 

strategies. BBB, blood–brain barrier; 

DEE, developmental and epileptic 

encephalopathy; GABA, γ- aminobutyric 

acid.
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in recruiting children fulfilling inclusion criteria (www. 

clini caltr ials. gov, NCT04639310). Moreover, retigabine 

was withdrawn from the market because of several 

pharmacological limitations, including (1) poor selec-

tivity among KCNQ subtypes (resulting in side effects 

such as urinary retention), (2) short half- life (requiring 

three- times- per- day dosing), (3) poor brain penetration, 

and (4) retinal and mucocutaneous blue–gray discolora-

tion due to photoinduced formation and accumulation 

of dimers in tissues.108 Thus, no drug is currently on the 

market to test the potential of KCNQ activators as pre-

cision therapy in epilepsy and, possibly, developmental 

disorders including autism, in KCNQ2- related DEE. 

For this reason, efforts are ongoing to synthesize com-

pounds with higher potency and efficacy as a Kv7 chan-

nel activator in vitro, no photoinduced dimer formation, 

higher brain/plasma ratio, and longer plasma half- life 

in vivo, when compared to retigabine.109

Genetic variants in the sodium-  and chloride- gated po-

tassium channel KCNT1 cause severe, drug- resistant rare 

forms of early onset epilepsy such as epilepsy of infancy 

with migrating focal seizures; patients affected by KCNT1- 

related encephalopathies also display developmental pla-

teauing or regression and psychiatric and intellectual 

disabilities.110 It is noteworthy that KCNT1 subunits inter-

act directly with the fragile X mental retardation protein, a 

protein that when missing or mutated results in fragile X 

syndrome, the most common form of inherited ID and au-

tism in humans.111 Given that the largest majority of patho-

genic KCNT1 variants cause GoF effects in vitro,112 KCNT1 

blockers such as quinidine have been proposed as possible 

precision therapy in patients affected by KCNT1- related 

diseases. However, heterogenous clinical responses have 

been obtained with quinidine113; several factors, including 

the natural history and severity of the underlying disease, 

the specific molecular defect, and the age of symptom 

onset and quinidine therapy initiation, in one with drug- 

specific pharmacokinetic and pharmacodynamic factors, 

might provide plausible explanations for such heterogene-

ity. Worldwide efforts to discover novel KCNT1 blockers are 

currently ongoing, although none of the newly synthesized 

or repurposed compounds described has yet been tested in 

patients with KCNT1- related DEEs.114–117

A precision therapeutic approach using a gene- 

silencing antisense oligonucleotide (ASO) strategy in a 

mouse model of KCNT1- associated DEE has revealed that 

a single intracerebroventricular bolus injection of a Kcnt1 

gapmer ASO in symptomatic mice, at postnatal day 40, 

significantly reduced seizure frequency, improved behav-

ioral abnormalities (including impaired nesting behaviors 

and enhanced exploration of the open arm in the elevated 

plus maze test), and extended overall survival compared 

with mice treated with a control ASO.118

6.2 | SCN1A

Evidence from rodent models suggests that mice 

with Scn1a haploinsufficiency exhibit hyperactivity, 

stereotyped behaviors, social interaction deficits, and 

impaired context- dependent spatial memory.119 Treatment 

with low- dose clonazepam rescued the abnormal social 

behaviors in the mouse model of Dravet syndrome, thus 

providing a potential therapeutic strategy for cognitive 

deficit and autism spectrum behaviors.119 Equally, 

cannabidiol has been demonstrated to improve seizures 

and social deficits in a mouse model of Dravet syndrome, 

providing further evidence that antiseizure medications 

might improve not only the seizure burden but also the 

neuropsychiatric comorbidities.120 Nevertheless, these 

observations from animal work have—so far—not been 

consistently replicated in human studies. Recent long- 

term prospective follow- up data appear to show an 

ever- widening gap in cognitive abilities and a marked 

increase in autistic features and other comorbidities over 

time in Dravet syndrome.8,120 The rise in comorbidities 

is particularly marked in younger compared to older 

patients, and predictors of worse long- term developmental 

outcome include poorer baseline language ability as well as 

more severe baseline epilepsy severity.8,120 Fenfluramine 

treatment in Dravet syndrome has been associated with 

an apparent dose- dependent, clinically meaningful 

improvement in behavior, emotion, cognition, and 

overall everyday executive function.121 Natural history 

data show that language and communication delays are 

observed early, and developmental stagnation occurs 

after 2 years of age, suggesting an optimal therapeutic 

window before 3 years of age.122 Accurate prediction of 

whether a young child with a pathogenic SCN1A variant 

will develop the severe epilepsy of Dravet syndrome or 

milder genetic epilepsy with febrile seizure plus (GEFS+) 

is challenging, and clinicians often miss the opportunity 

for early intervention as they wait for symptoms such as 

developmental delay to emerge. Advances in prediction 

modeling now allow objective estimation at disease 

onset regarding whether a child will develop Dravet 

syndrome versus GEFS+, assisting clinicians with 

prognostic counseling and decisions on early institution 

of therapies.123

6.3 | TSC1–2

Emerging clinical research is focusing on the mTOR 

pathway as a target for seizure control. Although ini-

tial investigations have primarily explored mTOR 

inhibitors, there is growing interest in other com-

pounds affecting this pathway, such as PI3K and AKT1 
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inhibitors, which are also undergoing clinical evalu-

ation.124,125 Addressing the nonneurological side ef-

fects associated with mTOR inhibitors is crucial, as 

their use is hindered by issues like stomatitis and sus-

ceptibility to infections. Recent experimental studies 

propose potential solutions, including brain- specific 

rapalogs that selectively inhibit brain mTOR activity 

while sparing other tissues. This approach, utilizing 

brain- permeable and brain- impermeable mTOR in-

hibitors, holds promise for mitigating nonneurological 

side effects.126 Moreover, targeting the mTOR pathway 

may offer benefits in managing epilepsy- associated 

comorbidities. Although current data are limited, a 

post hoc analysis of Japanese patients in the EXIST- 3 

study demonstrated improvements on the Pervasive 

Developmental Disorders–Autism Society Japan 

Rating Scale following treatment with everolimus. 

Further investigation is warranted to evaluate the im-

pact of mTOR pathway modulation on comorbidities 

associated with mTORopathies.127

Given these recent advances, it remains to be shown 

whether very early treatment and new emerging thera-

pies might be able to modify the natural history of DEEs 

and their neuropsychiatric comorbidities (Table  3 and 

Figure 2).

6.4 | Other nonpharmacological options 
for ASD in DEEs

The ASD phenotype in DEEs might diverge from “usual” 

ASD presentations. Understanding and addressing this 

distinct profile is crucial for developing effective interven-

tions tailored to the specific needs of individuals with both 

DEEs and ASD and epilepsy. There is a gap in evidence- 

based studies investigating the effects of early behavioral 

intervention for ASD co- occurring with epilepsy. Early 

parent mediated interventions in children with DEEs at 

high risk of developing ASD are important to stimulate 

brain plasticity in social brain circuitry and to foster lan-

guage and communication developmental trajectories.128 

The optimal therapeutical window to prevent language/

communication delay is before 36 months of age in chil-

dren with SCN1A-  and TSC- related DEEs.129 Recent stud-

ies from systematic review or small case series showed 

that the behavioral phenotype and the prognosis of autism 

can be modifiable with early intensive behavioral–cogni-

tive therapy.130,131

Overall, the use of new therapeutic approaches for 

some genetic DEEs associated with ASD showed that evi-

dence for efficacy on nonseizure symptoms, such as ASD 

and ID, is low, and more studies should be performed to 

reach a better understanding. T
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7  |  CURRENT CHALLENGES AND 
FUTURE DIRECTIONS

Despite recent advances in understanding the cellular and 

molecular bases of different genetic syndromes, reducing 

the gap between the appearance of the first seizures and the 

definite early diagnosis, and addressing the treatment of 

DEE- associated epilepsy–autism phenotypes, remain chal-

lenging in clinical practice. Further exploration is required 

to better refine the clinical phenotype of various DEEs at 

the onset, and large cohorts would enhance the under-

standing of the natural history of the disorder, potentially 

identifying personalized therapeutic targets in children 

with genetic DEEs. Conducting functional analyses of gene 

variants and rigorous preclinical testing to elucidate the 

pathophysiological mechanisms behind the epilepsy–au-

tism phenotype could shed light on why autistic symptoms 

persist even after seizure cessation in many DEEs.

Although recent advances in molecular genetic testing 

have facilitated greater recognition of early onset genetic 

DEEs, a substantial disparity persists between identify-

ing genes linked to DEEs and devising effective targeted 

treatments. Given the identification of genetic causes, 

forthcoming clinical trials should embrace a precision 

health approach targeting the underlying disease mecha-

nisms, assessing the efficacy not limited to seizure control 

but also including neurodevelopmental trajectories, ulti-

mately aiming to prevent the epilepsy–autism phenotype.

Integrating genomic discoveries with functional inves-

tigations and animal models offers a holistic approach to 

deciphering the mechanisms behind these disorders, in-

cluding the role of environmental factors. Such insights 

are crucial for devising precise interventions and enhanc-

ing our comprehension of the molecular underpinnings 

of neurodevelopmental disorders.
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